Cell Lineage of the Ilyanassa Embryo: Evolutionary Acceleration of Regional Differentiation during Early Development
نویسنده
چکیده
Cell lineage studies in mollusk embryos have documented numerous variations on the lophotrochozoan theme of spiral cleavage. In the experimentally tractable embryo of the mud snail Ilyanassa, cell lineage has previously been described only up to the 29-cell stage. Here I provide a chronology of cell divisions in Ilyanassa to the stage of 84 cells (about 16 hours after first cleavage at 23 degrees C), and show spatial arrangements of identified nuclei at stages ranging from 27 to 84 cells. During this period the spiral cleavage pattern gives way to a bilaterally symmetric, dorsoventrally polarized pattern of mitotic timing and geometry. At the same time, the mesentoblast cell 4d rapidly proliferates to form twelve cells lying deep to the dorsal ectoderm. The onset of epiboly coincides with a period of mitotic quiescence throughout the ectoderm. As in other gastropod embryos, cell cycle lengths vary widely and predictably according to cell identity, and many of the longest cell cycles occur in small daughters of highly asymmetric divisions. While Ilyanassa shares many features of embryonic cell lineage with two other caenogastropod genera, Crepidula and Bithynia, it is distinguished by a general tendency toward earlier and more pronounced diversification of cell division pattern along axes of later differential growth.
منابع مشابه
Nuclear Architecture and Epigenetics of Lineage Choice
Differentiation is an epigenetic process which is installed by changes of transcriptional programs over successive cellular divisions. A number of studies have reported the effects of biochemical modifications of chromatin (DNA and chromatin proteins) on the regulation of transcription. Although, these studies are able to explain how transcription of a given gene is regulated (toward activation...
متن کاملQuantifying Mosaic Development: Towards an Evo-Devo Postmodern Synthesis of the Evolution of Development via Differentiation Trees of Embryos
Embryonic development proceeds through a series of differentiation events. The mosaic version of this process (binary cell divisions) can be analyzed by comparing early development of Ciona intestinalis and Caenorhabditis elegans. To do this, we reorganize lineage trees into differentiation trees using the graph theory ordering of relative cell volume. Lineage and differentiation trees provide ...
متن کاملNanos Is Required in Somatic Blast Cell Lineages in the Posterior of a Mollusk Embryo
During animal development, blast cell lineages are generated by repeated divisions of a mother cell into a series of daughter cells, often with a specific series of distinct fates. Nanos is a translational regulator that is involved in germline development in diverse animals and also involved in somatic patterning in insects. Recently, Nanos was found to be required for maintenance of stem cell...
متن کاملTime Course of Degradation and Deadenylation of Maternal c-mos and Cyclin A2 mRNA during Early Development of One-Cell Embryo in Mouse
Early in the development of many animals, before transcription begins, any change in the pattern of protein synthesis is attributed to a change in the translational activity or stability of mRNA in the egg and early embryo. As a result, translational control is critical for a variety of developmental decisions, including oocyte maturation and initiation of preimplantation development. In this s...
متن کاملThe Potential of Menstrual Blood-Derived Stem Cells in Differentiation to Epidermal Lineage: A Preliminary Report
BACKGROUND Menstrual blood-derived stem cells (MenSCs) are a novel source of stem cells that can be easily isolated non-invasively from female volunteered donor without ethical consideration. These mesenchymal-like stem cells have high rate of proliferation and possess multi lineage differentiation potency. This study was undertaken to isolate the MenSCs and assess their potential in differenti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- PLoS ONE
دوره 4 شماره
صفحات -
تاریخ انتشار 2009